Name_____

<i>Two numbers that are <u>opposites</u> are the same</i> <i>opposite directions.</i>	from zero, but in				
An example of two opposites would be and					
The <u>absolute value</u> of a number is its distance from on the values are ALWAYS on the values are ALWAYS	he number line. Absolute				
Example: The absolute value of -9 is We can also write absolute value like this: 14 =					

- **1.** What is the opposite of -8? _____
- **2.** What is the opposite of ³/₄?
- **3.** What is the opposite of the opposite of -5? _____
- **4.** Put a star above 1½ <u>and</u> its opposite on the number line below:

- **5.** What is the absolute value of 4? _____
- **6.** |2| = _____
- 7. |-33| = _____
- **8.** |-12| + 25 = _____
- **9.** 45 ÷ |-9| = _____

- **10.** Nadia recorded the daily low temperatures, in degrees Celsius, on this vertical number line.
 - **a.** On which days were the temperatures **opposites**? +5 _____ and _____ +4
 Monday +3 -+2 + Tuesday **b.** The temperature *increased by* **2°C** between which two +1 consecutive days? 0 - Thursday _____ and _____ -1 -2 Wednesday c. Find the absolute value of each temperature and order -3 the days from least to greatest. (In other words, start with the day that is closest to zero and end with the 4 day furthest from zero.) Friday LEAST GREATEST
- **11.** Emily, Cora, Sahil, Austin, Ben, and Juan are playing a game. Each player gets a card with a number on it. The five players line up on a number line. If they are correct, the hidden letters spell a word.
 - a. For Round 1, Emily has 0, Ben has 3, Sahil has -2, Juan has -5, Austin has 2, and Cora has -1.
 (Put their first initial above their number.)

- **b.** If Emily's card has the letter **I**, Ben's has a **G**, Sahil's has a **P**, Juan has an **S**, Austin has an **N**, and Cora has an **R**. When they line up in order, <u>what word</u> do they spell?
- c. Do any of the kids have numbers that are opposites? If so, who?

a. $-\frac{1}{2}$	1
b. $-\frac{3}{4}$	-0.75
c. $-\frac{5}{6}$	$-\frac{7}{2}$
d. $\frac{1}{4}$	<u>5</u> 8
e. $\frac{5}{10}$	$\frac{3}{6}$
f. $-\frac{2}{3}$	2 3

13. Place the following numbers on the number line below: -3.7, 2.1, $\frac{39}{10}$, -1.99, $-\frac{1}{8}$

14. Each grid below represents one whole. Write the fraction and decimal modeled by the shaded area.

15. Write each decimal as a **fraction**.

a.	0.99	b.	0.622	C.	0.28
d.	0.8	e.	1.3	f.	0.35

16. Write each fraction as a **decimal**. (*Hint: First, change the denominator to 10, 100 or 1000.*)

a.
$$\frac{2}{5}$$
 b. $\frac{12}{20}$ **c.** $\frac{1}{4}$ **d.** $\frac{44}{50}$