\qquad

Two numbers that are opposites are the same \qquad from zero, but in opposite directions.

An example of two opposites would be \qquad and \qquad .

The absolute value of a number is its distance from \qquad on the number line. Absolute values are ALWAYS \qquad .

Example: The absolute value of -9 is \qquad . We can also write absolute value like this: |14| =

1. What is the opposite of -8 ? \qquad
2. What is the opposite of $3 / 4$? \qquad
3. What is the opposite of the opposite of -5 ? \qquad
4. Put a star above $11 / 2$ and its opposite on the number line below:

5. What is the absolute value of 4 ? \qquad
6. $|2|=$ \qquad
7. $|-33|=$ \qquad
8. $|-12|+25=$ \qquad
9. $45 \div|-9|=$ \qquad
10. Nadia recorded the daily low temperatures, in degrees Celsius, on this vertical number line.
a. On which days were the temperatures opposites?
and \qquad
b. The temperature increased by $2^{\circ} \mathrm{C}$ between which two consecutive days?
\qquad and \qquad
c. Find the absolute value of each temperature and order the days from least to greatest.
(In other words, start with the day that is closest to zero and end with the day furthest from zero.)

LEAST
GREATEST
11. Emily, Cora, Sahil, Austin, Ben, and Juan are playing a game. Each player gets a card with a number on it. The five players line up on a number line. If they are correct, the hidden letters spell a word.
a. For Round 1, Emily has 0, Ben has 3, Sahil has -2, Juan has -5, Austin has 2, and Cora has $\mathbf{- 1}$. (Put their first initial above their number.)

b. If Emily's card has the letter I, Ben's has a G, Sahil's has a P , Juan has an S, Austin has an N, and Cora has an R. When they line up in order, what word do they spell?
c. Do any of the kids have numbers that are opposites? If so, who?
12. Place $a<$, $>$, or $=$ between each pair of numbers.
a. $-\frac{1}{2} \quad 1$
b. $-\frac{3}{4} \quad-0.75$
c. $-\frac{5}{6} \quad-\frac{7}{2}$
d. $\frac{1}{4} \quad \frac{5}{8}$
e. $\frac{5}{10} \quad \frac{3}{6}$
f. $-\frac{2}{3} \quad \frac{2}{3}$
13. Place the following numbers on the number line below: $-3.7,2.1, \frac{\mathbf{3 9}}{10},-1.99,-\frac{1}{8}$

14. Each grid below represents one whole. Write the fraction and decimal modeled by the shaded area.
1.

Fraction: \qquad Decimal: \qquad Fraction: \qquad Decimal: \qquad
15. Write each decimal as a fraction.
a. 0.99
b. 0.622
c. 0.28
d. 0.8
e. 1.3
f. 0.35
16. Write each fraction as a decimal. (Hint: First, change the denominator to 10,100 or 1000.)
a. $\frac{2}{5}$
b. $\frac{12}{20}$
c. $\frac{1}{4}$
d. $\frac{44}{50}$

