\qquad

Percent means "out of \qquad ." The (\%) symbol is a quick way to write a
\qquad with a denominator of \qquad . As an example, instead of saying
"it rained 14 days out of every 100," we say "it rained ____ of the time."

$$
\text { Example: } \frac{18}{25}=\frac{72}{100}=0 . _-\ldots \%
$$

1. Fill in the missing fraction, decimal or percent below:

Fraction (Simplest Form)	Fraction (with 10, , o0, 1000 as denominator)	Decimal	Percent
$\frac{9}{25}$		0.47	
			3%
$\frac{1}{5}$		0.22	
		1.5	
$\frac{24}{30}$			

2. In a recent basketball game, Anna attempted $\mathbf{2 0}$ free throws. She made $\mathbf{1 6}$ of them.
a. What is her free-throw average as a fraction? \qquad
(simplest form)
b. What is her free-throw average as a decimal? \qquad
c. What is her free-throw average as a percent? \qquad
3. Order these numbers from least to greatest.

$$
\begin{array}{lllll}
\frac{21}{25} & 0.87 & 0.88 & \frac{4}{5}
\end{array}=
$$

\qquad
4. You want to buy a new phone. You are deciding between two models. Model X weighs 0.44 pounds and Model Z weighs $\frac{2}{5}$ pounds. You think the model that weighs less will be better. Which model should you buy? Why? (Show work to prove why.)
5. What is the opposite of -9.9 ? \qquad
6. What is the opposite of 14 ? \qquad
7. What is the absolute value of 5 ? \qquad
8. What is the absolute value of -2.6 ? \qquad
9. If asked to put the following numbers in order from least to greatest, would you be more likely to change them all to fractions or all to decimals? Why?
(Circle one)

$$
\begin{array}{lllll}
\frac{5}{10} & 0.3 & \frac{7}{20} & 0.4 & \frac{3}{4}
\end{array}
$$

Put them in order here:
(least to greatest)
10. Change the fractions below into decimals.
a. $\frac{8}{10}=$ \qquad
c. $\frac{12}{25}=$ \qquad
b. $\frac{43}{100}=$ \qquad
d. $\frac{2}{5}=$ \qquad
11. Change the following decimals into fractions. They DO NOT have to be written in simplest form.
a. $0.44=$ \qquad
c. $0.007=$ \qquad
b. $0.3=$ \qquad
d. $1.06=$ \qquad
12. On one very cold day in Lansing, the low temperature was $-9^{\circ} \mathbf{F}$. The high temperature was $-1^{\circ} \mathrm{F}$.
a. Write an inequality (using either > or <) to compare the two temperatures.
b. The next day, the high temperature was $-3^{\circ} \mathrm{F}$. Write an inequality to compare the two high temperatures.
13. The ratio of Fords to total cars in the parking lot is 9 to 25 .
a. What fraction of the cars are Ford? \qquad What percent is this? \qquad
b. What fraction of cars are not Ford? \qquad What percent is this? \qquad
14. Arrange these decimals from least to greatest:
-7.00
-0.47
-0.070

- 0.7
-0.047
\qquad

15. Arrange these decimals from least to greatest:
7.00
0.47
0.070
0.7
0.047
