Name_

Percent means "out of _____." The (%) symbol is a quick way to write a _____ with a denominator of _____. As an example, instead of saying "it rained 14 days out of every 100," we say "it rained ____% of the time." Example: $\frac{18}{25} = \frac{72}{100} = 0. = \frac{18}{25} = \frac{72}{100}$

1. Fill in the missing fraction, decimal or percent below:

Fraction (Simplest Form)	Fraction (with 10, 100, 1000 as denominator)	Decimal	Percent
$\frac{9}{25}$			
		0.47	
			3%
	$\frac{7}{10}$		
$\frac{1}{5}$			
		0.22	
			18%
$\frac{24}{30}$			
		1.5	

2. In a recent basketball game, Anna attempted 20 free throws. She made 16 of them.

3. Order these numbers from least to greatest.

21	0.07	0.00	4	_	
	0.07	0.00	-	_	
25			5		

4. You want to buy a new phone. You are deciding between two models. Model X weighs 0.44 pounds and Model Z weighs $\frac{2}{5}$ pounds. You think the model that weighs <u>less</u> will be better. Which model should you buy? Why? (Show work to prove why.)

- 5. What is the opposite of -9.9?
- 6. What is the opposite of 14? _____
- 7. What is the absolute value of 5? _____
- 8. What is the absolute value of -2.6?

9. If asked to put the following numbers in order from least to greatest, would you be more likely to change them <u>all to fractions</u> or <u>all to decimals</u>? Why?

10. Change the fractions below into decimals.

11. Change the following decimals into **fractions**. They <u>DO NOT</u> have to be written in simplest form.

- **a.** 0.44 = _____ **c.** 0.007 = _____
- **b.** 0.3 = _____ **d.** 1.06 = _____

- 12. On one very cold day in Lansing, the low temperature was -9° F. The high temperature was -1° F.
 - **a.** Write an **inequality** (using either > or <) to compare the two temperatures.
 - b. The next day, the high temperature was -3° F. Write an inequality to compare the two <u>high</u> temperatures.

- **13.** The ratio of **Fords** to **total cars** in the parking lot is 9 to 25.
 - a. What fraction of the cars are Ford? _____ What percent is this? _____
 - b. What fraction of cars are <u>not</u> Ford? _____ What percent is this? _____

- 14. Arrange these decimals from least to greatest:
 - -7.00 -0.47 -0.070 0.7 -0.047

15. Arrange these decimals from least to greatest:

7.00	0.47	0.070	0.7	0.047
------	------	-------	-----	-------