1. Find the <u>prime factorization</u> of the following numbers. (Write your answers with exponents.)

a. 60

b. 28

Prime Factorization:

Prime Factorization:

- - **b.** List ALL the factors of 32: ____ ___ ___ ___
 - **c.** What is the <u>greatest</u> common factor of 48 and 32? _____
 - **d.** What is another common factor of 48 and 32? _____

- **3.** a. List the first six multiples of 12: ____ ___ ___ ____
 - **b.** List the first six multiples of 8: ____ ___ ___ ____
 - c. What is the least common multiple of 12 and 8? _____
 - **d.** What is another common multiple of 12 and 8? _____

4. Write each problem below out as a multiplication problem, and then find the product.

a.
$$3^4 = 3 \times 3 \times 3 \times 3 = 81$$

- **b.** $8^2 =$ _____ = ____
- **c.** $2^3 =$ _____ = ____
- **d.** $10^5 =$
- **e.** 12² = _____ = ____

- **5.** Label each of the following as True (T) or False (F), then <u>show work</u> or <u>explain</u> to prove your answer:
 - a. ____ 12 is a common factor of 20 and 36.

b. ____ The GCF of two prime numbers is always 1.

c. ____ 25, 200, and 75 are all multiples of 25.

d. ____ The *prime* factors of 99 are 11 and 9.