Using Order of Operations, solve the following problems. Show work!

Don't forget:

P E M D A

3.
$$17 + (4 \cdot 3^2 + 5)$$

4.
$$2^3 + 4 \cdot 6 - 9$$

5. Which of the following expressions represent the area of the larger rectangle? Select <u>all</u> that apply.

A.
$$11(14+7)$$

B.
$$2 \cdot 21 + 2 \cdot 11$$

D.
$$11 \cdot 14 + 11 \cdot 7$$

F.
$$154 + 77$$

6. Use what you know about the **distributive property** to write number sentences for the **area** of the rectangle in **two** different ways. Then find the area using both expressions.

- 1. _____ Area = _____
- **2.** _____ Area = _____
- 7. Complete the statements below by circling the expressions that make each statement true.

$$6(5 \times 5 - 1) - 4$$

- **a.** To evaluate the expression above using the order of operations, first compute $\begin{bmatrix} 5 \times 5 \\ 5 1 \end{bmatrix}$.
- **b.** Next compute $\begin{bmatrix} 5 \times 4 \\ 6 \times 5 \\ 25 1 \end{bmatrix}$.
- **c.** The expression $6(5 \times 5 1) 4$ simplifies to $\begin{bmatrix} 116 \\ 140 \\ 149 \end{bmatrix}$

8. Solve the following problems using Order of Operations.

b.
$$42 - 40 \div 2^3$$

c.
$$23 + 4(16 - 9)$$

9.Your best friends have done their math homework, but they got different answers. Because you are a "mathemagician" they have asked you to look at their work and determine who's correct. Look at the work below. Determine which friend has the correct answer (hint: you may want to work it out yourself). You will need to <u>provide an explanation</u> to the friend with the incorrect answer so that your friend understands what their mistake was.

Friend #1	Friend #2
$100 - 10 \times 8 + 40 \div 5 \cdot (\underline{5-3})$	$100 - 10 \times 8 + 40 \div 5 \cdot (\underline{5-3})$
$100 - 10 \times 8 + 40 \div 5 \cdot (2)$	$100 - 10 \times 8 + 40 \div 5 \cdot (2)$
100 - 80 + 40 ÷ <u>5 · (2)</u>	$100 - 80 + \underline{40 \div 5} \cdot (2)$
100 - 80 + <u>40 ÷ 10</u>	100 — 80 + <u>8(2)</u>
<u>100 - 80</u> + 4	<u>100 - 80</u> + 16
<u>20 + 4</u>	<u>20 + 16</u>
24	36

- **a.** Which friend has INCORRECTLY solved the problem? _____
- $\boldsymbol{b.}\;$ Provide an EXPLANATION about what they did wrong:

10. Find the missing number to make each statement true.

a.
$$25(10 + 7) = (25 \text{ x} _) + (25 \text{ x} 7)$$

b.
$$16(5+3) = (\underline{\ } x 5) + (\underline{\ } x 3)$$

c.
$$7(20 + 4) = (7 \times 20) + (7 \times 20)$$

d.
$$(6 \times 11) + (6 \times 2) = (10 + 7)$$

e.
$$8(\underline{} + 4) = 72$$

f.
$$(8+2) = 100$$

11. Insert <u>parentheses</u> and/or <u>addition signs</u> to make each equation true.

a.
$$6 \ 3 \ 2 \ 5 = 16$$

c.
$$6 \ 3 \ 2 \ 5 = 35$$

d.
$$6 \ 3 \ 2 \ 5 = 36$$